

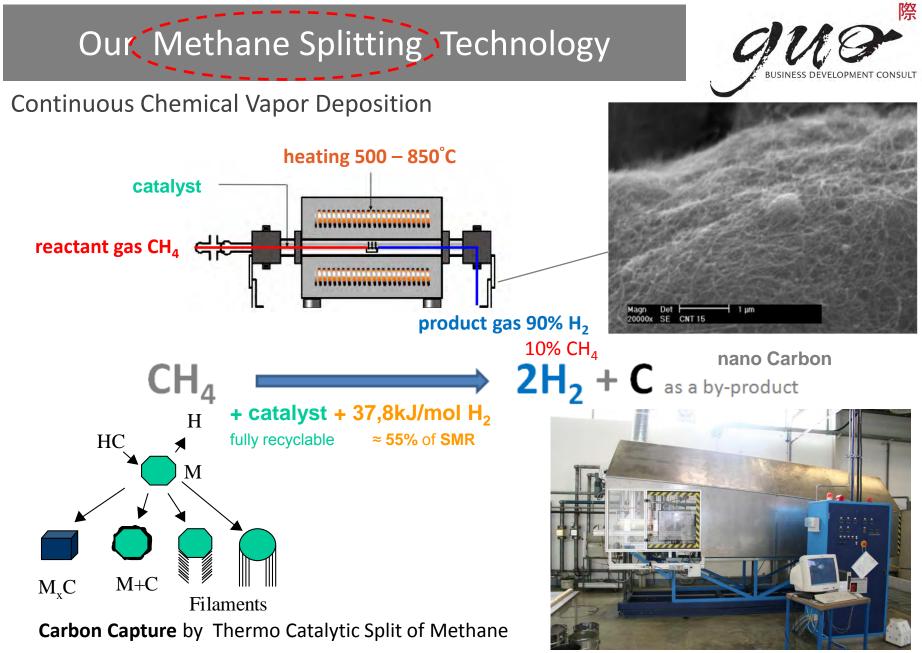
Low Energy CO₂ free C_xH_y Splitting

A Distributed Hydrogen Generation Model with value adding by-products

Innovation

A proprietary concept to provide maximum flexibility and retention of CARBON from waste/biomass in the anthropogenic cycle of matter and a Clean Fuel (Hydrogen) deliverable and/or flexible hydrocarbon liquids (synthetic gasoline) via the use of Hydrogen as a reactant.

A concept that can generate enough added value to be economic by itself enabling "Waste to Economy", in stead of costly Waste Remediation or need for ongoing Subsidies, Feed-in Tariffs or market regulations.

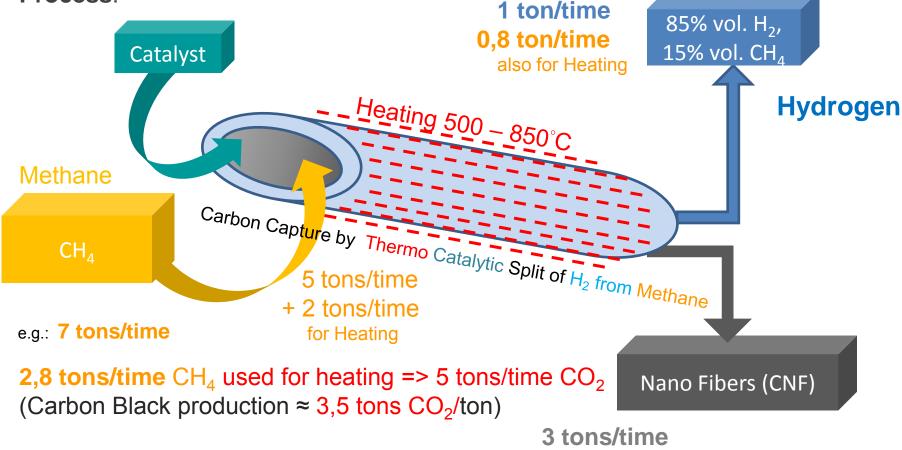

 CH₄ emitted in landfills or anaerobic decomposition of Organics (Sewage MSW or agricultural waste)

our reaction (nano)C + 2H₂

state of art

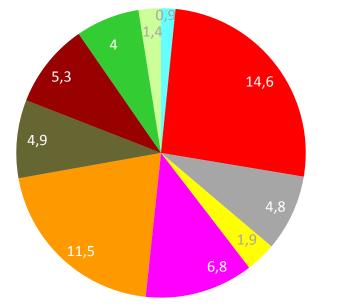
CH

Electricity (if you don't USE it you LOOSE it's economics) Unlocking the potency of Hydrogen Economy:
 from renewable feedstock
 at low GHG emissions
 with added value byproducts



Low Green House Gas Emission Hydrogen

Upgrading Methane into Clean Fuel – Hydrogen


in Closed Loop – Continuous Chemical Vapor Deposition [CL-CCVD] Process:

Proposed Development into Application

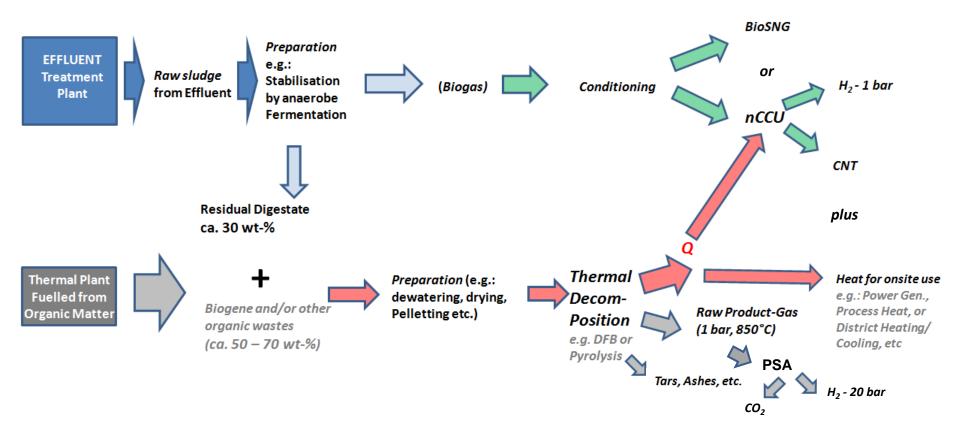
BUSINESS DEVELOPMENT CONSULT

nano Carbon Capture for Use from Anthropogenic CH₄

misc. Sewrvices

- Power Generation
- Industry
- Residential
- Transportation
- Methane
- N2O
- Forest Fires /Decay
- Biomass Use
- Misc. Flaring

Target-areas for nCCU application:


Ideally in combination within municipalities allowing CHP use within a plant and its waste heat for district HVAC utilization

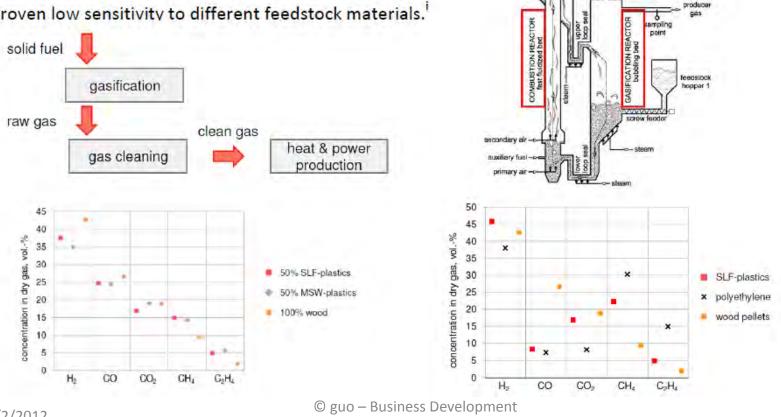
- Landfill gas
- Sewage gas
- Organic MSW (final deposit reduction) by Anaerobic Digestion or RDF usage
- Sewage Sludge Remediation
- Agricultural Decay nutrient recycling

Total Resource Efficiency Bio-Refinery

an opportunity for distributed H₂ Generation from MSW & sewage sludge

Schematic Mass-Flow

In collaboration with University of Technology Vienna, Institute for Chemical Process Engineering (Prof. H.Hofbauer/Dr. J.Kotik/S.Müller)


際

Thermal Decomposition of Organic Matter

by Dual Fluidized Bed Gasification

State of Art:

In order to achieve low emission thermal decomposition Dual Fluidized Bed Gasification has been developed and proven low sensitivity to different feedstock materials.¹

6/2/2012

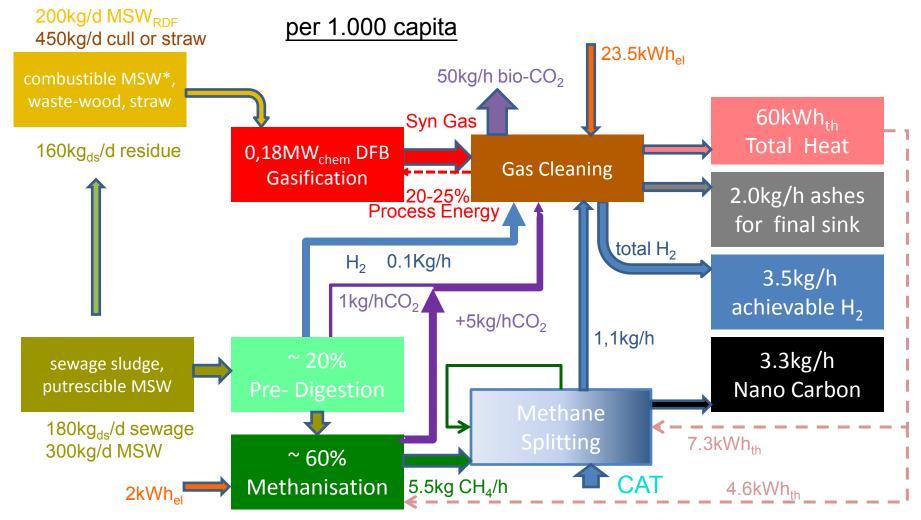
ⁱ⁾ BioEnergy2020+ (H.Hofbauer, R. Rauch, V. Wilk)

際

CONSULT

5 sampling point

screw feed


feedstock

hopper 2

Organic Waste – Bio-Refinery

BUSINESS DEVELOPMENT CONSULT

Hydrogen Production & nCCU from Organic Residues

6/2/2012

Added Value from Wastes

BUSINESS DEVELOPMENT CONSULT

From 50,000 capita or 200.000 capita communities

Input / Output	50,000 cpt	200,000 cpt
Putrescible MSW	15t/d (30% water cont) 60t/d (30% water cont	
Sewage Sludge	150t/d (90% water cont.)	600t/d (90% water cont.)
combustible MSW (RDF)	10t/d (at 19MJ/kg)	40t/d (at 19MJ/kg)
forest cull or waste straw	23t/d (20% water cont.)	90t/d (20% water cont.)
TOTAL chem. Energy IN	9MW _{chem} /h	37MW _{chem} /h
Hydrogen OUTPUT	4 t/d (1,500 t/yr)	17 t/d (6,000 t/yr)
Nano Carbon OUTPUT	4 t/d (1,400 t/yr)	16 t/d (5,750 t/yr)
estimated capex required	€ 14mio.	€ 35mio.
achievable revenues*)	€ 8.7mio./a	€ 35mio./a

HYDROGEN Nano Carbon *) at € 3,-/kg H₂ Fuel *) at € 3,-/kg Carbon Black Substitute

Deploy H₂-Economy in 200,000 cpt towns Support 20,000 LDV or 1,200 public FC buses from MSW usage gas station plus 90 tons per day cull and/or straw utilization Energy Waste The biogas collected 350tons per day of 6,000 tons per year off MSW undergoing MSW collected and Hydrogen: -12mill gallons gasoil CCVD splitting treated separately - 180kt/yr CO₂ saved Plus remediation of 600 tons per day sewage sludge - 600t/yr No_x saved 一个 好 一个 在 在 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 5,750 tons of **CNF** as carbon black substitute; or - 28kt/yr CB substitute enhanced thermo-plastics at 5-times usage value - 100kt/yr CO₂ saved

Sustainability Opportunities

Partners needed to make Predicted Markets happen

MSW authority

Increase Economic Value of MSW

Eliminate Green House Gas Emissions from land filling

Remediate Sewage Sludge to 25% Ashes

Add Value to cull and/or waste straw in logistically manageable volumes

Save oil/gas at auxiliary fueling for mixed MSW incineration

Rubber

Build lighter Tires Eliminate Green House Gas Emissions from Carbon Black **Content of Tires**

Develop rubber s with self diagnostic functions

Industry

Carbon Composites Optimize Plastic Part

Surfaces

Enable direct galvanic painting on Plastics -

OFM

Industries

Decrease weight from

Thermoplastic Parts

Replace Metal Parts

Molded or extruded

EMI shielding nano

through Injection

to allow Recyclability of Plastic Product contents

e.g. for Automotive, Handheld Devices and **Household Appliances** Electricity **Providers**

Get 90% of the Energy **Potential from Biomass in storable** form

Save Green House Gas **Emissions from** thermal power generation

Ability to generate **Distributed Power on Demand wherever CHP Heat Energy can** be used

Petro Chemical Industry

Save Natural Gas for **Exports**

Save CO₂ Emissions from Steam Reforming

Benefit from distributed Hydrogen generation for the build up of a potential Hydrogen Infrastructure

Extend Clean Fuel Product Portfolio for National and Export Markets

Development into Application Road Map

cost: € 1M Feasibility ongoing Laboratory Optimizations R&D activities	<pre>cost: € 8M Demonstration for a 8-9,000cpt town 30m³/h CH₄ splitting plant + Simulation Model Full Descriptions Safety Certification Detailed Plant Costing Detailed Process Costing</pre>	CAPEX: € 35M; with 60% Gross Margin (w.o. Feedstock Cost) Pilot plant for200,000cpt Operations & Endurance Testing 500m ³ /h CH ₄ splitting Pilot Plant based on Simulation validated by 30m ³ demonstrator Sales – Marketing and General & Admin Cost (incl. IP cost) 15MW _{chem} Gasifier	Open up a multi-billion market and create a distributed H ₂ economy Worldwide at 30% ratio: 15,000 bio-refinery plants for MSW utilization Total reduction: COD: 150,000,000tpa CO ₂ : 750,000,000tpa SO ₂ /NO _x : 2,700,000 tpa Making Economy from Waste without needing ongoing subsidies or trade regulations	
>10 years experience in nC application at GUO's team				
2010 20	I	*) with increasing nC pla	V, H ₂ infrastructure develop stic composite applications↑€/kg _{CNF} 016 year	

Sustainability

Economic

- Renewable/Repeatable Energy from waste
- Distributed Clean/Green Fuel for HFCV roll-out
- Unlocking multi-billion markets (nC and H₂)
- Closed Loop Circular Local Energy Economy
- Job opportunities (>1,000)

Social

- Waste utilization for fuel not competing against Food
- Boosting collaborations between key economic sectors
- Strengthen local competitiveness by closed loop circular energy-economy

Environment

- Total reduction (COD, CO₂, NO_x, SO₂)
- Higher added value from waste allows more sustainable Agricultural Practice

"The future is something that most of the time already happens before we anticipate it"

Please contact us:

Stefan Petters (Austria) Mobile.: +43 664 143 8891 E-Mail: go@int88.biz our website: www.int88.biz