

Technologies to Move MSW Challenge in to People Planet Profit Opportunities

via transformation of **Waste into** Synthesis Gas for e.g. 2nd Generation **Synthetic Fuel**

BUSINESS DEVELOPMENT CONSULT

Anthropogenic CH₄ from decomposing organics => #2 !

Total Global CO₂ Equivalents

TRL3 Bio-Refinery Simulation by TU VIE

際 のれの BUSINESS DEVELOPMENT CONSULT

to synthesize Waste into the Fuel of tomorrow by our UNIQUE SOLUTION PROPOSITION [USP]

"In 30 years we will either fly on 2nd generation bio-fuel or not at all anymore." (Dr. Alexander Zschocke, Senior Manager Aviation Bio-Fuels of Lufthansa, Fuels of the Future Conference, Berlin 2012)

Energy Efficiency State of Art from Organics

Accelerated Decomposition into energy-rich gas

By solid Biomass Gasification

or Anaerobic Digestion of putrescible Biomass

ph & temperature-controlled digester in Strem /Guessing District, at European Centre of Renewable Energy (Future Energy Technologies)

Delivering

50% Hydrogen, 20% CO, 20%CO₂, 7% CH₄

45-60% CH_4 + mostly CO_2 for the rest

steam driven dual fluidized bed gasification

for thermo-chemical use of solid fuels

- \checkmark no direct combustion of fuel
- ✓ anaerobic atmosphere in the "decomposition chamber"
- ✓ solid fuel transformation into usable energy is induced by a heat transferring medium
- ✓ producer-gas contaminants are primarily Hydrides that can be separated out by gas-cleaning
- \checkmark ashes are extracted by cyclones and final filtering
- ✓ combustion chamber can be run air at NO_x uncritical temperature
- ✓ the system has a multi-year TRL 9 industrial scale track record

Opportunities for CO₂ recycling

BUSINESS DEVELOPMENT CONSULT

Fuel Flexibility

up to 30% of the heating content of fuel could come from even from sewage sludge

SD-DFB Gasification Fuel Flexibility

BUSINESS DEVELOPMENT CONSULT

Gas Yields from different feedstocks

Technology Readiness Level

history & planned level of industrialization (biomass)

Gothenburg, [S]

Gothenburg, [S]

Oberwart, [AUT]

TU Vienna [AUT]

360 MJ Laboratory

1999

1/22/2014

33 GJ CHP_{ORC} plant

120 GJ SNG pilot plant

500 GJ SNG scale-up plant

2008

2013 Source: Swedish Gasification Center Conference 2013 R. Gebhart

> 30,000 operating hours demo-plant

Poli-generation producer gas platform at Guessing (AUT)

際

Energy distribution of process outputs

> 67% Product Gas plus 25% usable heat

Uplift of ADDED VALUE from Methane

Carbon Capture for CO₂ & WASTE HEAT RECYCLING **U**SE

"DRY THERMO-CATALYTIC DISSOCIATION" of hydrocarbon gas had been industrialized from synthetic diamond fabrication for high performance materials. Application to DECOMPOSITION-GAS from organic matter can UNLOCK FULL TRANSFORMATION OF ABUNDANT-HYDROCARBONS into chemical SYNTHESIS HYDROCARBON PRODUCTS.

CNT/H₂ co-production-TRL6 pilot plant

Operated at C-Polymers [Austria]

Removal of Catalyst

CNT Agglomerates

Courtesy of C-Polymers GmbH, [AUT]

Technology comparison at incineration practices / FICFB

260,000t/a	WIP 90's	WIP now	FICFB + ADOS CHP	FICFB + ADOS CCU
aux. fuel	800,000GJ	0GJ	OGJ	OGJ
Electricity	40,000MWh	67,600MWh	105,900-210,000MWh	0-210,000MWh
Heat	470,000MWh	426,400MWh	324,400-405,000MWh	192,750-405,000MWh
Syn.fuel	Obbl	Obbl	78,400- Obbl	205,000 – Obbl
€ _{rev} /t MSW	-42,38	35,49	71,06 – 63,36	145,00 – 63,36

based on the following price assumptions:

01	•
Electricity	€ 44/MWh _{el}
District Heat	€ 15/MWh _{th}
Diesel (syn.fuel)	€ 0,85/litre
FT-Wax	€ 2,36/kg

Looking for an Operators' Consortium

covering multiple local Waste to Value Supply Chains

COMPETENCE & MARKET POWER of each NATIONAL SET OF CONSORTS plus uncoupling from POLITICAL (regulatory) RISKS shall enable VENTURE CAPITAL financing of DEMO-VALIDATION

Proposed Innovation Financing Structure

際

differentiated RISK PROFILE SHARE BONDS (with partial variable share allocation)

ECONOMICALLY lean & ECOLOGICALLY the cleanest Solution :

- > 10-year IRR > 20%/a at ≥ €0.55/ltr. gasoline & less aerosols
- investment returns follow energy price index -> inflation hedge
- resource- & energy- efficiency => sustainability \geq
- \geq long term cost leadership in Waste to Energy Business

guo – Business Development ©

We look for partners to industrialize and roll-out this MSW-Innovation

Stefan Petters Tel: +43 664 143 8891 E-Mail: <u>go@int88.biz</u>